(Si Wu, 2008): Continuous-attractor Neural Network 1D
Here we show the implementation of the paper:
Si Wu, Kosuke Hamaguchi, and Shun-ichi Amari. “Dynamics and computation of continuous attractors.” Neural computation 20.4 (2008): 994-1025.
Author:
Chaoming Wang (chao.brain@qq.com)
The mathematical equation of the Continuous-Attractor Neural Network (CANN) is given by:
\[\tau \frac{du(x,t)}{dt} = -u(x,t) + \rho \int dx' J(x,x') r(x',t)+I_{ext}\]
\[r(x,t) = \frac{u(x,t)^2}{1 + k \rho \int dx' u(x',t)^2}\]
\[J(x,x') = \frac{1}{\sqrt{2\pi}a}\exp(-\frac{|x-x'|^2}{2a^2})\]
\[I_{ext} = A\exp\left[-\frac{|x-z(t)|^2}{4a^2}\right]\]
[7]:
import brainpy as bp
import brainpy.math as bm
[8]:
class CANN1D(bp.dyn.NeuGroup):
def __init__(self, num, tau=1., k=8.1, a=0.5, A=10., J0=4.,
z_min=-bm.pi, z_max=bm.pi, **kwargs):
super(CANN1D, self).__init__(size=num, **kwargs)
# parameters
self.tau = tau # The synaptic time constant
self.k = k # Degree of the rescaled inhibition
self.a = a # Half-width of the range of excitatory connections
self.A = A # Magnitude of the external input
self.J0 = J0 # maximum connection value
# feature space
self.z_min = z_min
self.z_max = z_max
self.z_range = z_max - z_min
self.x = bm.linspace(z_min, z_max, num) # The encoded feature values
self.rho = num / self.z_range # The neural density
self.dx = self.z_range / num # The stimulus density
# variables
self.u = bm.Variable(bm.zeros(num))
self.input = bm.Variable(bm.zeros(num))
# The connection matrix
self.conn_mat = self.make_conn(self.x)
# function
self.integral = bp.odeint(self.derivative)
def derivative(self, u, t, Iext):
r1 = bm.square(u)
r2 = 1.0 + self.k * bm.sum(r1)
r = r1 / r2
Irec = bm.dot(self.conn_mat, r)
du = (-u + Irec + Iext) / self.tau
return du
def dist(self, d):
d = bm.remainder(d, self.z_range)
d = bm.where(d > 0.5 * self.z_range, d - self.z_range, d)
return d
def make_conn(self, x):
assert bm.ndim(x) == 1
x_left = bm.reshape(x, (-1, 1))
x_right = bm.repeat(x.reshape((1, -1)), len(x), axis=0)
d = self.dist(x_left - x_right)
Jxx = self.J0 * bm.exp(-0.5 * bm.square(d / self.a)) / \
(bm.sqrt(2 * bm.pi) * self.a)
return Jxx
def get_stimulus_by_pos(self, pos):
return self.A * bm.exp(-0.25 * bm.square(self.dist(self.x - pos) / self.a))
def update(self, tdi):
self.u.value = self.integral(self.u, tdi.t, self.input, tdi.dt)
self.input[:] = 0.
[9]:
cann = CANN1D(num=512, k=0.1)
Population coding
[10]:
I1 = cann.get_stimulus_by_pos(0.)
Iext, duration = bp.inputs.section_input(values=[0., I1, 0.],
durations=[1., 8., 8.],
return_length=True)
runner = bp.dyn.DSRunner(cann,
inputs=['input', Iext, 'iter'],
monitors=['u'])
runner.run(duration)
bp.visualize.animate_1D(
dynamical_vars=[{'ys': runner.mon.u, 'xs': cann.x, 'legend': 'u'},
{'ys': Iext, 'xs': cann.x, 'legend': 'Iext'}],
frame_step=1,
frame_delay=100,
show=True,
# save_path='../../images/cann-encoding.gif'
)
Template matching
The cann can perform efficient population decoding by achieving template-matching.
[11]:
cann.k = 8.1
dur1, dur2, dur3 = 10., 30., 0.
num1 = int(dur1 / bm.get_dt())
num2 = int(dur2 / bm.get_dt())
num3 = int(dur3 / bm.get_dt())
Iext = bm.zeros((num1 + num2 + num3,) + cann.size)
Iext[:num1] = cann.get_stimulus_by_pos(0.5)
Iext[num1:num1 + num2] = cann.get_stimulus_by_pos(0.)
Iext[num1:num1 + num2] += 0.1 * cann.A * bm.random.randn(num2, *cann.size)
runner = bp.dyn.DSRunner(cann,
inputs=('input', Iext, 'iter'),
monitors=['u'])
runner.run(dur1 + dur2 + dur3)
bp.visualize.animate_1D(
dynamical_vars=[{'ys': runner.mon.u, 'xs': cann.x, 'legend': 'u'},
{'ys': Iext, 'xs': cann.x, 'legend': 'Iext'}],
frame_step=5,
frame_delay=50,
show=True,
# save_path='../../images/cann-decoding.gif'
)
Smooth tracking
The cann can track moving stimulus.
[12]:
dur1, dur2, dur3 = 20., 20., 20.
num1 = int(dur1 / bm.get_dt())
num2 = int(dur2 / bm.get_dt())
num3 = int(dur3 / bm.get_dt())
position = bm.zeros(num1 + num2 + num3)
position[num1: num1 + num2] = bm.linspace(0., 12., num2)
position[num1 + num2:] = 12.
position = position.reshape((-1, 1))
Iext = cann.get_stimulus_by_pos(position)
runner = bp.dyn.DSRunner(cann,
inputs=('input', Iext, 'iter'),
monitors=['u'])
runner.run(dur1 + dur2 + dur3)
bp.visualize.animate_1D(
dynamical_vars=[{'ys': runner.mon.u, 'xs': cann.x, 'legend': 'u'},
{'ys': Iext, 'xs': cann.x, 'legend': 'Iext'}],
frame_step=5,
frame_delay=50,
show=True,
# save_path='../../images/cann-tracking.gif'
)